12. NATURAL ANTINUTRITIVE AND TOXIC COMPOUNDS

antinutritive compounds

interference with nutrients

toxic compounds

natural toxic compounds

toxins

products of anthropogenic activity

xenobiotics

toxic effects

acute, late (chronic)

legislation

feeding experiments → NOAEL(No Observed Adverse Effect Level) → ADI (Acceptable Daily Intake) = NOAEL/100 (mg/kg), safety factor (100 or more)

MLR = ADI * 60, food basket, consumed amount

anti-nutritive substances

plant origin, potential risk

- enzyme inhibitors, anti-enzymes
- substances interfering with metabolism of vitamins, anti-vitamins, antagonists of vitamins
- substances interfering with metabolism of metals
- phenol compounds (tannins) reaction with proteins
- galactooligosaccharides (α -galactosides) causing flatulence

anti-enzymes

inhibitors of proteases (anti-proteases), inhibitors of serine proteases (trypsin, chymotrypsin, elastase) weight loss of domestic animals, inactivation by heat (proteins)

anti-vitamins

structure analogues (oxythiamine, linatin) enzymes (ascorbase, thiaminase, lipoxygenase) formation of non-utilisable complexes (avidin)

mineral binding compounds

phytic acid and phytine Fe, Zn oxalic acid Ca glucosinolates and their degradation products I

tannins

slow growth of domestic animals

decrease of protein digestibility and of minerals absorption

α-galactosides

raffinose, higher homologues, gastrointestinal problems

toxic compounds plant and animal origin, real risk

- developing food intolerance, toxic to certain individuals
- developing intoxication, toxic to all individuals

food developing food intolerance

allergy (immunological reaction), alergenes (imunogenes), non developing formation of IgE celiac disease, non gluten diet (<100 mg/kg dry matter gliadin)

intolerance (non-immunological manifestation), malfunction of metabolisms, hypersensitiveness (anaphylaxis), averse effects (idiosyncrasy)

lactose intolerance

phenylketonuria, protein hydrolysates without Phe

favism, fava beans (Vicia faba)

HO NH2
HO NR

divicine,
$$R = NH_2$$
isouramil, $R = OH$
 CH_2OH
 OH
 OH

toxins and other compounds developing intoxication

classification

- according to structure
- according to origin
- according to toxic effects

main groups of toxins

- alkaloids
- saponins
- cyanogens
- glucosinolates
- lectins
- estrogenic substances
- phototoxic substances
- toxic amino acids and their products (biogenic amines)

anti-nutritive and toxic compounds of legumes

- inhibitors of proteases and amylases
- α-galactosides
- substances developing favism
- lectins
- cyanogenic glycosides
- estrogens
- saponins
- lathyrogens

toxic compounds of mushrooms

- proteins
- peptides
- amino acids
- amines
- hydrazines
- alkaloids
- terpenoids

alkaloids

classification (book 3, tab. 10.2)

true alkaloids

(N-heterocycles, derived from amino acids)

pyridine (nicotinic) tobacco a. piperideine pepper a.

pyrrolizidine senecioic (necins) a.

quinolizidine lupine a.

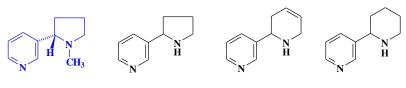
quinoline quinine (bark of cinchona tree) a.

pseudoalkaloids

(*N*-heterocyclic, derived from others precursors)

purine coffee, tee, cocoa a. terpenoid (glycoalkaloids) potato, tomato a.

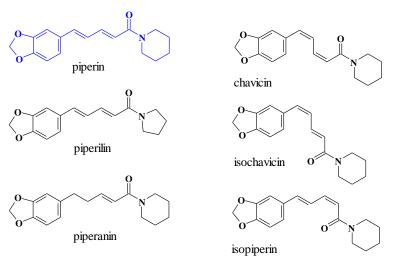
protoalkaloids


(non N-heterocycles, derived from amino acids

capsaicinoids bell pepper and chili pepper a.

pyridine alkaloids

nicotine and minor alkaloids (~ 20 compounds)


tobacco (obligation to declare their content on tobacco products, warning)

nikotin nornikotin anatabin anabasin

piperidine alkaloids

pepper (burning compounds), piperine, homologues, geometric isomers,

pyrrolizidine alkaloids

mono-, di-, macrocyclic esters of plants, hepatotoxic compounds

quinolizidine alkaloids

lupine, many similar structures

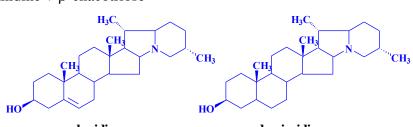
quinoline alkaloids cinchoma tree

legislation: food additive, alcoholic beveragea: 300 mg/l, non-alcoholic (tonic water): 75 mg/l (teratogenic)

purine alkaloids

row of relative compounds, coffee (book 3, tab. 10.4), tee, cocoa (chocolate), maté, guarana

$$R^1$$
 N
 N
 R^3
 N
 R^3


caffeine $R^1 = R^2 = R^3 = CH_3$ theobromine $R^1 = H, R^2 = R^3 = CH_3$ theophylline $R^1 = R^2 = CH_3, R^3 = H$

steroid glycoalkaloids

row of relative compounds (book 3, tab. 10.5) potato, tomato, eggplant heteroglycosides, aglycones, sugars

potato:

 α -solanine = solanidine + β -solatriose α -chaconine = solanidine + β -chacotriose

solanidin demissidin

distribution (book 3, tab. 10.6)

legislation: 200 mg/kg

tomato:

tomatine = tomatidine + β -lycotetraose

content (book 3, tab. 10.7)

legislation: 200 mg/kg, teratogenic

capsaicinoids

capsaicin, homologues, bell and chili peppers (burning compounds) influence of technological procedures (book 3, tab. 10.8)

capsaicin, (E)-8-methyl-N-vanillylnon-6-enamide

saponins

many similar compounds of plant origin

content (book 3, tab. 10.9)

heteroglycosides, aglycone, sugar, aglycone = sapogenin (sapogenol),

- triterpenoic alcohols
- sterols (4-demethylsterols)

biological effects

erythrocyte hemolysis, damage of intestinal mucose,

- toxic for cold-blooded animals
- bitter taste
- detergents activity, emulsion (o/v)
- fungicide, antioxidant, anti-carcinogenic, anti-cholesterolemic activities

usage

- foaming compounds (cosmetics)
- emulsifiers (cosmetics)
- sweeteners (glycyrrhizin, liquorice: 0,2-5,6 % saponins)

cyanogenic glucosides

many compounds of similar structure, foods of plant origin content of HCN in cyanogens (book 3, tab. 10.10)

heteroglycosides, aglycone, sugar, aglycone = 2-hydroxynitril (cyanhydrin)

nitril 2-hydroxykyseliny

substituents

- aliphatic
- aromatic

sugar

- mostly Glu
- disaccharides: genciobiose and others

chirality acetone, methyl(ethyl) ketone benzaldehyde

properties

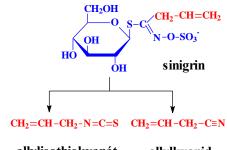
• decomposition (β -glucosidase) \rightarrow HCN, toxicity (inhibition of cytochromoxidase, actual intoxication, chronic intoxication (cassava, manioc)

glucosinolates

thioglucosides (glucosides of mustard oils), plum seeds, foods of plant origin (*Brassica* plants) names and structure (book 3, tab. 10.12) dominant glucosinoles in vegetables (book 3, tab.10.13) content (book 3, tab. 10.14)

heteroglycosides, sugar, aglycone = thiohydroxamate-O-sulphonate, K⁺ ion

substituents


- aliphatic
- aromatic
- heterocyclic

sugar

exclusively Glc

properties

- degradation (myrosinase) → isothiocyanates, nitriles and other products
- toxicity, isothiocyanates and goitrin strumigenic, nitriles hepatotoxic

allylisothiokyanát a

allylkyanid

$$\begin{array}{c} \text{CH}_2\text{OH} \\ \text{OH} \\ \text{OH} \\ \text{OH} \\ \text{Progoitrin} \\ \\ \text{CH}_2 = \text{CH} - \text{CH} - \text{CH}_2 - \text{N} = \text{C} = \text{S} \\ \\ \text{CH}_2 = \text{CH} - \text{CH} - \text{CH}_2 - \text{C} = \text{N} \\ \\ \text{OH} \\ \\ \text{S} \\ \text{goitrin} \\ \end{array}$$

plant phenols estrogenic compounds

activity (book 3, tab. 10.17)

 phytoestrogenes isoflavones food of plant origin

content in soy beans (book 3, tab. 10.15)

daidzin, R = H genistin, R = OH

aglycon daidzein aglycon genistein

content in soy beans (0,13 - 0,42 %)

pterocarpanes lignans

content (book 3. tab. 10.16)

H₃CO CH₂OH CH₂OH OCH₃

coumestrol germinated soy beans

secoisolariciresinol linseeds

- mycoestrogenes
- xenoestrogenes

•

properties: simultaneously useful and harmful

phototoxic compounds

cumarins

furanocumarins

content in foods (book 3, tab. 10.18)

foods of plant origin

0

0

cumarine

furanocumarine

linear psoralen

angular angelicin

properties

- phototoxicity (sensitivity of non pigmented skin, connection with skin cancer, acute dermatitis)
- phytoalexins (phytoncides, plant antibiotics, pesticides), blastocolines (inhibit germination of seeds)
- antimicrobial and another effects

phototoxic pigments

hypericin (St. John's wort), fagopyrin (buckwheat)

lectins (fytohematoglutinins) (book 3, tab. 10.19)

foods of plant origin (seeds and other parts of plants)

proteins with another centre than catalytic

- merolectins (1 centre, catalytic no)
- hololectins (2 centres, catalytic no)
- chimerolectins (1-2 centres, catalytic yes)

soy lectin (metaloprotein, 120 kDa, bound *N*-acetyl-D-galactosamine)

properties

- precipitate of erythrocytes, interaction with sugar in glycoproteins and glycolipids membranes (protection mechanism of plants against predators, parasites)
- toxic intravenously, some orally, some not at all, some probiotics (garlic)

amino acids

lathyrogens

foods of plant origin (seeds of vetch) amino acids (peptides, nitriles)

3-(N-oxalyl)-2,3-diaminopropionic acid

properties

- structure appearance with proteinogenic amino acids, metabolic failure
- deformation of legs (osteolathyrism), injury of blood vessel (angiolathyrism), disorder of neural system (neurolathyrism), human, above all farm animals

biogenic amines

precursors (book 3, tab. 10.20)

aliphatic, aromatic, heterocyclic bases with biological activity, fermented and microbially adulterated plant and animal foods

formation

from amino acids by microbial(book 3, tab. 10.21) carboxylyases and transaminases

properties

hormones (allergic reaction, anaphylactic shock), psychoactive and vasoactive compounds content (book 3, tab. 10.22, 10.23) changes in salami and fish (book 3, tab. 10.24)